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Abstract

Fractals Generating Techniques introduce interesting part of Fractals Geometry. In this paper,
we introduce some outstanding beautiful images known as Fractals. Our goal is to show
techniques to generate some beautiful fractals like Mandelbrot Set, Fractal Trees, Heart Shape
Fractal, Julia set, Height Field. We restrict our attention to generate the said spectacularly
images considering some technigues such as geometric iteration rules, successive removals efc.
Special emphasize is given to consider very new generating functions as well as their suitable
initial seeds so that we can see some new fractals after a number of iterations. Necessary
programs are considered for all cases. We use Mathematica and Mat Lab to perform

programming.
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1.0 Introduction

The term 'Fractal' is fascinating to many people which are none other than the beautiful but
complicated images in the nature. Typically, mathematics consists of complicated figures, boring
formulas and often monotonous calculation while the fractal geometry brings art in the field of
mathematics which gives a different taste of the study. The most interesting thing about fractal is that
they give a mathematical description of the existing natural object which often includes very
complicated patterns such as coastlines, mountains, ferns, trees or parts of living organisms [1]. Before
the invention of computer some people had done a tremendous work on fractals though fractal
geometry is closely connected with computer techniques. At first the British cartographers encountered
the problem in measuring the length of Britain coast. The actual length of the coastline was
approximately half the length of coastline measured on a detailed map [2]. As they looked closer and
closer they found more detailed and longer the coastline. Without realizing they had discovered one of

the main properties of fractals.
1.1 Historical background

The credit goes to Benoit Mandelbrot for the development of fractal geometry; many other

mathematicians preceding him in the century had laid the foundations for his work. Moreover,
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Mandelbrot was able to utilize the advancements of computer technology that his predecessors
distinctly lacked; however, this in no way diminishes from his visionary achievements. Nevertheless,
to make Mandelbrot's work clearer and to establish its connections to other branches of mathematics
the works of Karl Weierstrass, Georg Cantor, Felix Hausdorff, Gaston Julia, Pierre Fatou and Paul

Lévy undoubtedly helps in a salient way [3].
1.2 Basic idea

The idea of fractals is comparatively new, but the seed was sowed in the 19" century
mathematics [3]. A fractal is a fragmented shape that can be subdivides in part each of which at least
a reduced size copy of the whole. Mathematically we can generate fractals which are reproducible at
any magnification or reduction and the reproduction of each parts looks just like the original, or at least

has a similar pattern.

The familiar Euclidean geometry deals with objects which includes integer dimensions such
as zero-dimensional points, one-dimensional lines and curves, two-dimensional surfaces like planes,
and three-dimensional solid objects such as balls and blocks (e.g. spheres and cubes). However, the
objects found in the nature which often have dimensions are not a whole number. And the reason for

this is the property called self-similarity.

A fractal is an ongoing pattern. Fractal patterns are infinitely complicated and they are self-
similar across different scales. It includes a very simple method to create a fractal. If repeat a simple
pattern over and over again continuously we come to end with a fractal. This is an ongoing feedback
loop. Driven by recursion, fractals are images of dynamic systems — the pictures of Chaos [4].
Geometrically, they lie in between our familiar dimensions. Fractal patterns are very mush familiar to
us as the nature is full of fractals. For example: clouds, rivers, trees, mountains, coastlines, seashells,
hurricanes, etc. While the abstract fractals such as the Mandelbrot Set which can be generated by

repeating a simple complex function repeatedly.

In this paper, we will describe some of the wonderful new ideas in the area of mathematics
known as fractal geometry. As we will see, fractals are incredibly complicated and often quite

beautiful geometric shapes that can be generated by simple rules.

The word is related to the Latin verb frangere, which means “to break” [4]. In the Raman
mind, frangere may have evoked the action of breaking a stone; since the adjective derived it combines

the two most obvious properties of broken stones, irregular and fragmentation. This adjective is fractus,
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which lead to fractal. The etymological kinship with “fraction” is also significant if ones interprets
“fraction” as a number that lies between integers. Indeed, a fractal set can be considered as lying

between the shapes of Euclid [5].
In his founding paper Beno"it Mandelbrot coined the term Fractal, and described it as follows:

A [fractal is a] rough or fragmented geometric shape that can be subdivided in parts, each of

which is (at least approximately) a reduced-size copy of the whole [6].
1.3 Some famous fractals

There are a lot of fractals that have generated by the mathematicians. Among them some most

famous fractals are the Sierpinski Triangle, the Koch Curve, and the Cantor Set etc.
Here we discussed another two famous fractals—The Mandelbrot and Julia set.

1.3.1 The mandelbrot set

Named after Benoit Mandelbrot, Among the existing fractals the Mandelbrot set is one of the
most famous and complicated fractal. Behind this complex picture there is a simple equation.
Mandelbrot was playing with the simple quadratic equation z=z>+¢ and made the most famous fractal
in the history. Both z and ¢ are complex numbers in this equation. In other words, the Mandelbrot set

is the set of all complex ¢ such that iterating z=z*+c does not diverge [6].

Fig. 1. Mandelbrot

To generate the Mandelbrot set graphicgﬁg/, the computer screen is to be considered as the
complex plane. Each point on the plane have to tested by the equation z=z>+c. If the iterated z stayed

within a given boundary forever that is it converges then the point is inside the set and the point is
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plotted black. If the iteration went of control that is it diverges then the point was plotted in a color

with respect to how quickly it vanishes.

For instance, let ¢ = 1 gives the sequence 0, 1, 2, 5, 26... and clearly it tends to infinity. Since the

sequence is unbounded for 1, so 1 is not an element of the Mandelbrot set. On the other hand if c =i

( where i is defined as’ f= "1) gives the sequence 0, i, (-1 + 1), -1, (-1 + 1), -i, ... which is bounded and

so 1 belongs to the Mandelbrot set.
1.3.2 The Julia set

Another famous fractal which is very closely related to the Mandelbrot set is the Julia set. It
was named after Gaston Julia [6,7], during the early twentieth century who studied the iteration of

polynomials and rational functions, making the Julia set much older than the Mandelbrot set

Fig. 2. Julia Set

The remarkable difference between the Julia set and the Mandelbrot set is in the way of

iteration. In the case of Mandelbrot set we have to iterate z always starting from 0 and varying the
value of ¢. Where the Julia set iterates for a fixed value of ¢ and varying values of z. That is we can
say that, the Mandelbrot set is in the parameter space, or the c-plane, while the Julia set is in the

dynamical space, or the z-plane [6,7].

2.0 Methodology

Where Euclidean geometry describes lines, ellipses, circles, etc. with equations, fractal
geometry describes objects in terms of algorithms that are sets of instructions on how to create a fractal.
One way to describe fractals is through what are called iterated function systems, or IFS [8]. This is
the only type of fractal that we shall discuss in detail in this thesis paper. IFS follow the general
approach of altering a geometric object in a particulaf way, leaving multiple smaller objects each of
which is similar to the original, and then repeating the process on each of those smaller objects to create

even smaller parts, and so on. The fractal is the result of carrying this process out infinitely many times.
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The iterated function systems is used based on fixed geometric replacement rules; may be
stochastic or deterministic; e.g., Koch snowflake, Cantor set, Haferman carpet, Sierpinski
carpet, Sierpinski gasket, Peano curve, Harter-Heighway dragon curve, T-Square, Menger

sponge

*  Strange attractor is the method which includes iterations of a map or solutions of a system of

initial-value differential equations that exhibit chaos.

*  Escape-time fractals is a formula or recurrence relation at each point in a space (such as the
complex plane); usually quasi-self-similar; also known as "orbit" fractals; e.g., the
Mandelbrot set, Julia set, Burning Ship fractal, Nova fractal and Lyapunov fractal. The two-
dimensional vector fields that are generated by one or two iterations of escape-time formulae
also give rise to a fractal form when points (or pixel data) are passed through this field

repeatedly.

*  Stochastic rules generate random fractals; such as the Lévy flight, percolation clusters, self-
avoiding walks, fractal landscapes, trajectories of Brownian motion and the Brownian tree
(i.e. dendritic fractals can be generating by modeling diffusion-limited aggregation or

reaction-limited aggregation clusters).

A recursive topological algorithm for refining tiling includes finite subdivision rules and this
is same as the process of cell division. For instance, the Cantor set and the Sierpinski carpet
are generated by iterative processes which includes finite subdivision rules, as is barycentric

subdivision [9].

There are some of senses to show techniques to generate some beautiful fractals like
Mandelbrot Set, Julia set, Pythagorean Tree, Heart Shape Fractal, fractal Crown, Height Field.
We use some mathematical software’s like MATHEMATICA, MATLAB etc. so that we can describe
the graphical representation of our mathematical research.

3.0 Experiments & results

Considering different and suitable functions, we have eventually generated some beautiful
and natural images. These images include beautiful flowers, household things, ornaments fractal and

fractals that result from known and famous mathematical functions or combination of them. On the
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basis of MATHEMATICA and MATLAB Program we present here some beautiful and interesting
fractals.
3.1 Pythagorean Tree

Several steps for construction of Pythagorean tree are shown below.

We replace each ‘branch’ of 1st step with a scaled copy of the generator to create 2™ iteration.

e84

Fig. 3. Step 1 Fig. 4. Step 2 Fig. 5. Step 3
We can repeat this process to create later steps.

Fig. 6. Final step.
Repeating this process, we can create Pythagorean tree.

3.1.1 MATHEMATICA Program

FractalTree[pt : { , }, \[Theta]orient : \[Pi]/2, \|[Theta]sep : \[Pi]/9,
depth_Integer: 9] := Module[{pt2},
If{depth == 0, Return[]],
pt2 = pt + {Cos[\[Theta] orient], Sin[\[Theta]orient] } *depth;
DeleteCases[ Flatten@{Line[{pt, pt2}],
fractalTree[pt2, \[Theta]orient - \[Theta]sep, \[Theta]sep,depth - 1],
fractalTree[pt2, \[Theta]orient + \[Theta]sep, \[Theta]sep,depth -1]},
Null]]
Graphics [fractalTree[{0, 0}, \[Pi]/2, \[Pi]/9]]
3.2 Heart Shape Fractal
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The function forms the heart shape in 3D with appropriate MATLAB Code that has been given
below.
At 3" jteration it takes the form of a rectangle rotating about 45 degrees. At 10 iteration it becomes

to look like octagonal.

Fig. 7. At 3" [teration Fig. 8. At 10" Iteration Fig. 9. At 30™Tteration

When the iteration number gets the score 100 the function finally produces actual heart shape image.

T ¥ T T
7 B0 & 40 w0 4o B

Fig. 10. After 100™ iteration
3.2.1 MATLAB Program

% set up mesh

n=100;

x=linspace(-3,3,n);

y=linspace(-3,3,n);

z=linspace(-3,3,n);

[X. Y, Z]=ndgrid(x,y,z);

%Compute function at every point in mesh

F=320* (-X"2 . *Z"3 -9.*%Y."2.*2."3/80) + (X "2 + 9.* Y."2/4 + Z"2-1)."3);
%generate plot

isosurface(F,0)
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view ([-67.5 2]);

colormap(flag);
3.3 Fractal Crown

Generating Function: Z— 5
k=1

3.3.1 MATHEMATICA Program

n=280;
a=5.0;
b = Log([2]/Log[3]; Fig. 11. Fractal crown
image = Table[0, {n}, {n}];

Dofw = Sum[ENI (-a)™k t)/a™b k), {k, 1, 14}];

i, j} = Floor[n({Re[w], Im[w][}/1.25 + 0.5)];

image[[i, j]] = Abs[w], {t, -Pi, Pi, 0.001}];;

ListDensityPlot[image, Mesh -> False, Frame -> False]

3.4 Generating Mandelbrot set

Fig. 12. G.F. f(z)=z+c, c=-.2+0i Fig. 13. G. F. f(z)=z2+¢, c=-.6+0i

Fig. 14. G.F. f(2)= 7’ +¢, c=.6+0i Fig. 15. G. F. f(z)=z*+c, c=-.6+0i
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Fig. 16. G. F. f(z)=z>+c, c=-.6+0i

3.4.1 MATLAB Program:
col=20;

m=400;

cx=-.2;

cy=0;

1=1.5;
x=linspace(cx-l,cx+1,m);
y=linspace(cy-l,cy+l,m);
[X,Y]=meshgrid(x,y);
Z=zeros(m);

C=XH*Y;

for k=1:col;

Z=Z 504G,
W=exp(-abs(Z));

end

colormap copper (256);
pcolor(W);

shading flat;
axis('square','equal’,'off);

3.5 Generating Julia set
Generating Function:

f(z) = 2+ ¢ where ¢ = 0.27+0.53i.
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Fig. 17. G. F: f(z)=2°"+¢, ¢ = -.2+0i

Fig. 18. 1% iteration (when z = 0)

Fig. 19. 10" iteration
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Fig. 20. 50" iteration Fig. 21. 120" iteration: Complete Julia set.

Fig. 22. Mandelbrot set height field.

3.5.1 MATLAB Program:
%%% Compute and draw the Julia set

clear;

cle;

%%% Parameters

c=0.27+0.53i; % complex number

niter=1; % number of iterations

th=10; % threshold to determine divergence

v=1000; % resolution (<-> number of points to compute)

%%% Initialisation .

¥ = max(abs(c),2); % radius of the circle beyond which every point diverges

d = linspace(-r,r,v); % divide the x-axis

Z = ones(v,1) *d+i*(ones(v,1)*d)'; % create the matrix A containing complex numbers
C = zeros(v,v); % Julia set point matrix

%%% Compute the julia set
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for k = I:niter

Z = Z.*Z+ones(v,v).*c;
C = Ct+(abs(Z)<=v);
end

%%%% Figurefigure(21)
clf;

imagesc(C);
colormap(jet),

hold off;

axis equal;

axis off;
3.6 Generating Mandelbrot Set Height Field:

Generating Function: cet = n + logIn(R) - logzIn|z|
3.6.1 MATHEMATICA Program

R=6;
image = ParametricPlot3D[Module[{z = 0.0, i = 0}, While[i < 100 && Abs[z] < R"2, z =z"2 + xc
+1yc; i++]; cet = Iffi I= 100, i + (Log[Log[R]] - Log[Log[Abs[z]]])/Log[2], 0] {xc, yc,
0.5Min[0.1cet, 1], {EdgeForm/[], SurfaceColor[Hue[l - 0.1cet]]}}], {xc, -2.0, 1.0}, {yc, -1.5, 1.5},
PlotPoints -> 64, Boxed -> False, Axes -> False, DisplayFunction -> Identity];
<< MathGL3d OpenGLViewer';
MVShow3D[image, MVNewScene -> True];
4.0 Conclusion

Fractals Generating Techniques introduce interesting part of Fractals Geometry. In this thesis,
we introduce some outstanding beautiful images known as Fractals. Our goal is to show techniques to
generate some beautiful fractals like Mandelbrot Set Fractal, Fractal Trees, Julia set, Pythagorean Tree,
Heart Shape Fractal, fractal Crown, Height Field. We restrict our attention to generate the said
spectacularly images considering some techniques such as geometric iteration rules, successive
removals etc. Special emphasize is given to consider very new generating functions as well as their
suitable initial seeds so that we can see some new fractals after a number of iterations. Necessary
programs are considered for all cases. We still are failing to consider generating function or suitable

initial seed for some fractals though their images exist.
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